글리코겐 : 교육, 회복, 분열, 기능

글리코겐은 많은 양의 포도당 잔류 물로 구성된 동물의 예비 탄수화물입니다. 글리코겐 공급으로 혈중 포도당 결핍을 빠르게 채울 수 있습니다. 레벨이 낮아지면 글리코겐이 분열되고 유리 포도당이 혈액에 들어갑니다. 사람에서 포도당은 주로 글리코겐으로 저장됩니다. 세포가 개별 포도당 분자를 저장하는 것은 세포 내부의 삼투압을 상당히 증가시킬 수 있기 때문에 유리하지 않다. 그것의 구조에서, 글리코겐은 전분, 즉 식물에 의해 주로 저장되는 다당류와 닮았다. 전분은 서로 연결된 포도당 잔기로 구성되어 있지만, 글리코겐 분자에 더 많은 가지가 있습니다. 글리코겐에 대한 고품질의 반응 (요오드와의 반응)은 요오드와 전분의 반응과 달리 갈색을 띄게하여 보라색을 얻을 수 있습니다.

글리코겐 생산 조절

글리코겐의 형성과 분해는 여러 호르몬을 조절합니다 :

1) 인슐린
2) 글루카곤
3) 아드레날린

글리코겐 생성은 혈중 포도당 농도가 높아진 후에 발생합니다 : 포도당이 많이 있으면 미래에 저장해야합니다. 세포에 의한 포도당 섭취는 주로 두 개의 호르몬 길항제 즉 인슐린과 글루카곤에 의해 조절됩니다. 두 호르몬 모두 췌장 세포에서 분비됩니다.

참고 : "글루카곤"과 "글리코겐"이라는 단어는 매우 유사하지만 글루카곤은 호르몬이고 글리코겐은 예비 폴리 사카 라이드입니다.

인슐린은 혈액에 포도당이 많은 경우 합성됩니다. 이것은 보통 사람이 음식을 먹은 후에 발생합니다. 특히 음식에 탄수화물이 풍부한 음식 (예 : 밀가루 또는 단 음식을 먹는 경우)이있는 경우에 발생합니다. 음식에 포함 된 모든 탄수화물은 단당으로 분해되며 이미이 형태로 장벽을 통해 혈액으로 흡수됩니다. 따라서, 혈당치가 상승한다.

세포 수용체가 인슐린에 반응하면 세포는 혈액에서 포도당을 흡수하고 다시 그 수준이 감소합니다. 그건 그렇고 당뇨병 - 인슐린 부족 -은 비 유적으로 "풍족한 배고픔"이라고 불립니다. 왜냐하면 탄수화물이 풍부한 음식을 먹은 후 피에 설탕이 많이 나타 났지만 인슐린이 없으면 세포가 그것을 흡수 할 수 없기 때문입니다. 포도당 세포의 일부는 에너지로 사용되며 나머지는 지방으로 전환됩니다. 간세포는 흡수 된 포도당을 이용하여 글리코겐을 합성합니다. 혈액에 포도당이 거의 없다면 역 과정이 일어납니다 : 췌장은 호르몬 글루카곤을 분비하고 간세포는 글리코겐 분해, 포도당을 혈액으로 방출, 또는 젖산과 같은 간단한 분자에서 다시 포도당을 합성하기 시작합니다.

아드레날린은 또한 글리코겐 분해로 이어 지는데, 왜냐하면이 호르몬의 모든 작용은 신체를 동원하여 "타격 또는 달리기"반응을 준비하기 때문입니다. 그리고 이것을 위해서는 포도당 농도가 높아야합니다. 그러면 근육은 에너지로 사용할 수 있습니다.

따라서 음식물을 흡수하면 호르몬 인슐린이 혈액으로 방출되고 글리코겐이 합성되며, 기아로 인해 호르몬 인 글루카곤이 방출되고 글리코겐이 분해됩니다. 스트레스 상황에서 발생하는 아드레날린의 방출은 또한 글리코겐 분해로 이어집니다.

글리코겐은 무엇부터 합성 되나요?

글루코오스 -6- 포스페이트는 글리코겐 또는 글리코겐 생성의 합성을위한 기질로서의 역할을한다. 이것은 6 번째 탄소 원자에 인산 잔기가 붙어 포도당에서 얻어지는 분자입니다. 글루코오스 -6- 인산염을 형성하는 포도당은 혈액에서 간장으로 유입되어 간에서 혈액으로 유입됩니다.

또 다른 옵션이 가능합니다 : 포도당은보다 간단한 전구 물질 (젖산)에서 재 합성 될 수 있습니다. 이 경우 혈액에서 나오는 포도당은 예를 들면 근육에 들어가서 에너지를 방출하면서 젖산으로 갈라지고 축적 된 젖산은 간으로 옮겨지고 간 세포는 포도당에서 포도당을 재 합성합니다. 그런 다음이 포도당은 글루코오스 -6 포스 포로 전환 될 수 있으며 글리코겐을 합성하기 위해이를 기반으로 한 것입니다.

글리코겐 형성 단계

글루코오스로부터 글리코겐 합성 과정에서 일어나는 일은 무엇입니까?

1. 인산 잔기가 첨가 된 포도당은 글루코오스 -6- 인산이됩니다. 이것은 효소 hexokinase 때문입니다. 이 효소는 여러 가지 다른 형태를 가지고 있습니다. 근육의 헥소 키나아제는 간에서 헥소 키나아제와 약간 다릅니다. 간장에 존재하는이 효소의 형태는 포도당과 관련이 있으며, 반응 중에 생성 된 생성물은 반응을 억제하지 않습니다. 이 때문에 간 세포는 많은 양이있을 때에 만 포도당을 흡수 할 수 있으며, 처리 할 시간이 없어도 많은 기질을 포도당 -6- 인산으로 즉시 전환시킬 수 있습니다.

효소 포스 포 글루코 타제는 글루코오스 -6- 포스페이트를 그의 이성체 인 글루코오스 -1- 인산으로 전환시키는 것을 촉매한다.

3. 생성 된 글루코오스 -1- 인산은 UDP- 글루코오스를 형성하는 우리 딘 트리 포스페이트와 결합한다. 이 과정은 UDP-glucose pyrophosphorylase 효소에 의해 촉진된다. 이 반응은 반대 방향으로 진행될 수 없으며, 즉 세포 내에 존재하는 조건에서 돌이킬 수 없다.

효소 글리코겐 합성 효소는 포도당의 잔류 물을 신생 글리코겐 분자로 옮긴다.

5. 글리코겐 발효 효소는 글리코겐 분자에 새로운 "분지"를 만드는 분 지점을 추가합니다. 나중에이 지점의 끝에서 새로운 포도당 잔기가 글리코겐 신타 제를 사용하여 첨가됩니다.

형성 후 글리코겐은 어디에 저장 되나요?

글리코겐은 일생 동안 필요한 예비 폴리 사카 라이드이며 일부 세포의 세포질에있는 작은 알갱이의 형태로 저장됩니다.

글리코겐 저장 기관 :

1. 간. 글리코겐은 간에서 아주 풍부하며, 글리코겐 공급을 사용하여 혈액 내 당의 농도를 조절하는 유일한 기관입니다. 최대 5-6 %의 간장에서 글리코겐이있을 수 있으며, 이는 대략 100-120 그램에 해당합니다.

2. 근육. 근육에서 글리코겐 저장은 백분율 (최대 1 %)이 적지 만 체중 별로는 간에서 저장된 모든 글리코겐을 초과 할 수 있습니다. 근육은 글리코겐이 혈액으로 붕괴 된 후에 형성된 포도당을 방출하지 않으며, 자신의 필요를 위해서만 사용합니다.

3. 신장. 그들은 소량의 글리코겐을 발견했습니다. 신경아 교세포와 백혈구, 즉 백혈구에서도 작은 양이 발견되었습니다.

글리코겐 저장 기간은 얼마나 오래 지속됩니까?

유기체의 필수 활동의 과정에서 글리코겐은 식사 후 거의 언제나 합성됩니다. 몸은 글리코겐을 대량으로 저장할 수 없습니다. 그 주요 기능은 가능한 한 영양소 기증자가 아닌 혈액 내 설탕 량을 조절하기 때문입니다. 글리코겐 저장은 약 12 ​​시간 동안 지속됩니다.

비교를 위해 저장된 지방 :

- 첫째, 그들은 보통 저장된 글리코겐의 질량보다 훨씬 더 큰 질량을 가지고 있으며,
- 둘째, 그들은 한 달 동안 존재할 수 있습니다.

또한 인체는 탄수화물을 지방으로 전환 할 수 있지만 저장 지방은 글리코겐으로 전환 할 수 없으며 직접 에너지로만 사용할 수 있습니다. 그러나 글리코겐을 포도당으로 분해 한 다음 글루코오스 자체를 파괴하고 결과물을 지방의 합성에 사용하여 인체가 충분히 능력을 발휘할 수 있도록하십시오.

글리코겐

글리코겐은 다당류에 속하는 인체의 "예비"탄수화물입니다.

때로는 실수로 "글루코겐"이라는 용어로 불립니다. 두 번째 용어는 췌장에서 생산되는 인슐린 길항제 단백질 호르몬이기 때문에 두 이름을 혼동하지 않는 것이 중요합니다.

글리코겐이란 무엇입니까?

거의 모든 식사로 인체는 포도당으로 혈액에 들어가는 탄수화물을 섭취합니다. 그러나 때때로 그 양이 유기체의 요구를 초과하면 포도당 과량이 글리코겐의 형태로 축적되며, 필요한 경우 추가 에너지로 몸을 나누어 풍부하게합니다.

재고 저장 위치

가장 작은 과립 형태의 글리코겐 보유 물질은 간과 근육 조직에 저장됩니다. 또한,이 다당류는 신경계, 신장, 대동맥, 상피, 뇌, 배아 조직 및 자궁의 점막에 존재합니다. 건강한 성인의 몸에는 보통 약 400g의 물질이 있습니다. 그러나 그런데 신체 활동이 증가함에 따라 신체는 주로 근육 글리코겐을 사용합니다. 따라서 운동 전 약 2 시간 전에 보디 빌더가 물질의 저장량을 회복하기 위해 고 탄수화물 음식을 포화시켜야합니다.

생화학 적 특성

화학자들은 다당류를식이 (C6H10O5) n 글리코겐이라고 부릅니다. 이 물질의 또 다른 이름은 동물성 전분입니다. 글리코겐은 동물 세포에 저장되지만,이 이름은 정확하지 않습니다. 프랑스의 생리 학자 버나드 (Bernard)가 그 물질을 발견했습니다. 거의 160 년 전에 한 과학자가 간세포에서 "예비"탄수화물을 처음 발견했습니다.

"여분"탄수화물은 세포질의 세포질에 저장됩니다. 그러나 몸이 갑자기 포도당이 부족하다고 느끼면 글리코겐이 방출되어 혈액에 들어갑니다. 그러나 흥미롭게도 간 (간장)에 축적 된 다당류 만이 포도당으로 변형 될 수 있으며 이는 "배고픈"유기체를 포화시킬 수 있습니다. 글 랜드의 글리코겐 매장량은 5 %에 ​​달하며 성인 유기체에서는 약 100-120g입니다. 탄수화물 (과자, 밀가루, 녹말 음식)이 가득한 식사 후 약 1 시간 30 분에 최대 농도의 간장 섭취가 가능합니다.

근육 다당류의 일부로 직물의 1 ~ 2 % 이상을 차지하지 않습니다. 그러나 총 근육 면적이 주어지면 글리코겐이 근육에 축적되어 간에서 물질의 저장량을 초과한다는 것이 분명해진다. 또한 소량의 탄수화물이 신장, 두뇌의 신경아 교세포 및 백혈구 (백혈구)에서 발견됩니다. 따라서, 성인 신체에서 글리코겐의 총 보유량은 거의 0.5 킬로그램이 될 수 있습니다.

흥미롭게도 "예비"사카 라이드는 일부 식물의 세포, 진균 (효모) 및 박테리아에서 발견됩니다.

글리코겐의 역할

대부분 글리코겐은 간과 근육의 세포에 집중되어 있습니다. 그리고 예비 에너지의이 두 가지 원천은 다른 기능을 가지고 있음을 이해해야합니다. 간에서 얻은 다당류는 포도당을 몸 전체에 공급합니다. 그것은 혈당 수준의 안정성을 담당합니다. 과도한 활동 또는 식사 사이에 혈장 포도당 수치가 감소합니다. 그리고 저혈당을 피하기 위해 간 세포에 들어있는 글리코겐이 분열되어 혈류에 들어가 포도당 지수를 평준화합니다. 이와 관련하여간에의 규제 기능은 과소 평가되어서는 안됩니다. 어떤 방향 으로든 설탕 수준을 변경하면 치명적인 심각한 문제가 발생할 수 있기 때문입니다.

musculoskeletal 시스템의 기능을 유지하려면 근육 저장소가 필요합니다. 심장은 글리코겐 저장이있는 근육이기도합니다. 이것을 알면 왜 대부분의 사람들이 장기 기아 나 식욕 부진 및 심장 질환을 앓고 있는지 분명해진다.

그러나 여분의 글루코오스가 글리코겐의 형태로 축적 될 수 있다면 질문은 생깁니다. "탄수화물 음식이 지방층에 의해 몸에 침착되는 이유는 무엇입니까?" 이것은 설명이기도합니다. 몸에있는 글리코겐의 양은 무 차원이 아닙니다. 신체 활동이 적 으면 동물성 전분은 쓸 시간이 없기 때문에 포도당은 다른 형태로 축적됩니다 - 피부 아래의 지질 형태.

또한 글리코겐은 복합 탄수화물의 이화 작용에 필요하며 신체의 대사 과정에 관여합니다.

합성

글리코겐은 탄수화물로부터 몸에서 합성되는 전략적 에너지 예비입니다.

첫째, 신체는 전략적 목적으로 얻은 탄수화물을 사용하고 나머지는 비오는 날을 위해 낳습니다. 포도당 상태로의 글리코겐 분해가 에너지 부족으로 인한 것입니다.

물질의 합성은 호르몬과 신경계에 의해 조절됩니다. 이 과정은 특히 근육에서 "아드레날린을 시작합니다". 그리고 간에서 동물성 전분을 분리하면 호르몬 인 글루카곤 (금식 중에 췌장에서 생산 됨)이 활성화됩니다. 인슐린 호르몬은 "여분의"탄수화물을 합성합니다. 이 과정은 여러 단계로 구성되며 식사 중에 만 발생합니다.

글리코겐증 및 기타 질환

그러나 어떤 경우에는 글리코겐의 분열이 일어나지 않습니다. 결과적으로 글리코겐은 모든 기관과 조직의 세포에 축적됩니다. 일반적으로 이러한 위반은 유전 질환 (물질의 파괴에 필요한 효소의 기능 장애)이있는 사람들에게서 관찰됩니다. 이 상태를 글리코겐증 (glycogenosis)이라는 용어로 부르며 상 염색체 열성 병리의 목록을 가리킨다. 오늘날이 질병의 12 가지 유형이 의학에 알려져 있지만, 지금까지는 절반 만 충분히 연구되었습니다.

그러나 동물성 전분과 관련된 유일한 병리학은 아닙니다. 글리코겐 질병은 또한 글리코겐 생성을 포함하는데, 이는 글리코겐 합성에 관여하는 효소가 완전히없는 질환이다. 질병의 증상 - 저혈당 및 경련이 현저합니다. 글리코겐 증의 존재는 간 생검에 의해 결정됩니다.

글리코겐에 대한 신체의 필요성

글리코겐은 예비 에너지 원으로 정기적으로 복원하는 것이 중요합니다. 적어도 과학자들은 말합니다. 신체 활동이 증가하면 간과 근육에서 탄수화물 보유량이 완전히 고갈되어 생체 활동과 인간의 활동에 영향을 미칩니다. 탄수화물이없는식이 요법으로 간에서 글리코겐 저장량이 거의 0으로 감소합니다. 강렬한 힘 훈련 중에 근육 보유량이 고갈됩니다.

글리코겐의 최소 일일 복용량은 100g 이상입니다. 그러나이 수치는 다음과 같은 경우에 증가하는 것이 중요합니다.

  • 강렬한 육체 노동;
  • 강화 된 정신 활동;
  • "배고픈"식이 요법 이후.

반대로, 글리코겐이 풍부한 식품에 대한주의는 간 기능 장애, 효소 부족 환자가해야합니다. 또한, 포도당이 많이 함유 된 식사는 글리코겐 사용을 감소시킵니다.

글리코겐 축적 용 식품

연구자들에 따르면 글리코겐 축적량이 신체가 섭취하는 칼로리의 65 % 정도가 탄수화물 식품에서 얻어야한다고한다. 특히, 동물성 전분을 복원하기 위해서는식이 요법 제과 제품, 시리얼, 시리얼, 다양한 과일 및 채소를 도입하는 것이 중요합니다.

글리코겐의 가장 좋은 소스는 설탕, 꿀, 초콜릿, 마멀레이드, 잼, 날짜, 건포도, 무화과, 바나나, 수박, 감, 달콤한 패스트리, 과일 주스입니다.

체중에 대한 글리코겐의 영향

과학자들은 약 400 그람의 글리코겐이 성인 유기체에 축적 될 수 있다고 결론지었습니다. 그러나 과학자들은 또한 1 그램의 포도당 포도당이 약 4 그램의 물과 결합한다는 결론을 내렸다. 그래서 400g의 다당류는 글리코겐 수용액 약 2kg입니다. 운동 중 과도한 발한을 설명 : 몸은 글리코겐을 소모하고 동시에 4 배 이상의 체액을 잃습니다.

글리코겐의 이러한 특성은 체중 감소를위한 급식 다이어트의 빠른 결과를 설명합니다. 탄수화물 다이어트는 글리코겐의 집중적 인 섭취를 유발하고 그로 인해 체내의 체액을 유발합니다. 알다시피 1 리터의 물은 1kg의 물입니다. 그러나 사람이 탄수화물 함량이있는 정상적인 식단으로 돌아 가면 동물성 전분은 회복되고식이 요법 기간에는 액체가 손실됩니다. 이것은 명시적인 체중 감량의 단기 결과에 대한 이유입니다.

정말 효과적인 체중 감량을 위해 의사는 다이어트를 수정하여 (단백질을 선호하기 위해)뿐만 아니라 신체 활동을 증가시켜 글리코겐의 급속 소비를 유도하도록 권고합니다. 그런데 연구자들은 2-8 분간의 심혈관 훈련이 글리코겐 저장과 체중 감소를 사용하기에 충분하다고 계산했습니다. 그러나이 공식은 심장 질환이없는 사람들에게만 적합합니다.

적자 및 잉여 : 결정 방법

과량의 글리코겐 함량이 포함되어있는 유기체는 혈액 응고 및 간 기능 손상으로이를보고 할 가능성이 가장 큽니다. 이 다당류가 과도하게 축적 된 사람들도 장에서 오작동하고 체중이 증가합니다.

그러나 글리코겐의 결핍은 흔적이없이 몸을 통과하지 못합니다. 동물성 전분의 부족은 정서적 및 정신적 장애를 유발할 수 있습니다. 무감각, 우울한 상태로 나타납니다. 면역 약화, 기억력 부족 및 근육량의 급격한 감소를 경험 한 사람들의 에너지 보유량 고갈을 의심 할 수 있습니다.

글리코겐은 신체의 중요한 예비 에너지 원입니다. 단점은 골격의 감소뿐 아니라 생명력의 감소입니다. 물질의 결핍은 모발, 피부의 질에 영향을 미칩니다. 눈의 빛의 상실조차도 글리코겐 결핍의 결과입니다. 다당류 부족 증상을 발견했다면식이 요법을 개선 할 생각입니다.

글리코겐

글리코겐은 인간, 동물, 균류 및 박테리아에서 에너지 저장의 한 형태로 작용하는 다분 지화 포도당 다당류입니다. 다당류 구조는 체내 포도당의 주요 저장 형태입니다. 인간에서는 글리코겐이 주로 간과 근육 세포에 생성되어 저장되며, 3 ~ 4 개의 물로 수화됩니다. 1) 글리코겐은 에너지의 2 차 장기 저장으로서 기능하며, 에너지의 1 차 예비는 지방 조직에 포함 된 지방이다. 근육 글리코겐은 근육 세포에 의해 포도당으로 전환되고, 간 글리코겐은 중추 신경계를 비롯한 신체 전반에 사용되는 포도당으로 전환됩니다. 글리코겐은 식물에서 에너지 저장으로 기능하는 포도당 폴리머 인 전분의 유사체입니다. 그것은 아밀로펙틴 (전분 성분)과 유사한 구조를 가지고 있지만, 전분보다 더 강하게 분지되고 압축되어있다. 둘 다 건조한 상태의 백색 분말입니다. 글리코겐은 많은 세포 유형에서 세포질 / 세포질에서 과립으로 나타나며 포도당 순환에서 중요한 역할을합니다. 글리코겐은 포도당에 대한 갑작스런 필요성을 충족시키기 위해 신속하게 동원 될 수 있지만, 트리 글리세 라이드 (지질)의 에너지 저장보다 덜 컴팩트 한 에너지 예비를 형성합니다. 간에서 글리코겐은 체중의 5 ~ 6 % (성인에서는 100-120 g) 일 수 있습니다. 간에서 저장된 글리코겐 만 다른 기관에서 사용할 수 있습니다. 근육에서는 글리코겐 농도가 낮습니다 (근육 질량의 1-2 %). 몸, 특히 근육, 간 및 적혈구에 저장된 글리코겐의 양은 주로 운동, 기초 대사 및 식습관에 달려 있습니다. 소량의 글리코겐이 신장에서 발견되며 심지어 뇌와 백혈구의 일부 glial 세포에서 더 적은 양이 발견됩니다. 자궁은 또한 임신 중에 배아를 키우기 위해 글리코겐을 저장합니다.

구조

글리코겐은 글루코오스 잔기의 직쇄로 구성된 분 지형 바이오 폴리머이며, 8-12 개 글루코스 정도마다 분지 된 사슬이있다. 포도당은 하나의 포도당에서 다음 포도당으로 α (1 → 4) 글리코 시드 결합과 선형으로 연결됩니다. 분지는 새로운 분지의 첫 번째 포도당과 줄기 세포의 사슬에서 포도당 사이의 글리코 시드 결합 α (1 → 6)에 의해 분리 된 사슬과 관련이있다. 글리코겐이 합성되는 방법 때문에 각 글리코겐 성 과립은 글리코 게닌 단백질을 통합합니다. 근육, 간 및 지방 세포의 글리코겐은 글리코겐 1g 당 칼륨 0.45 밀리몰과 관련된 글리코겐의 일부 당 3 또는 4 개의 물로 구성된 수화 된 형태로 저장됩니다.

기능들

탄수화물 또는 단백질을 함유 한 음식이 섭취되고 소화됨에 따라 혈당치가 상승하고 췌장이 인슐린을 분비하게됩니다. 문맥으로부터의 혈당은 간세포 (간세포)로 들어간다. 인슐린은 글리코겐 합성 효소를 비롯한 여러 효소의 작용을 자극하기 위해 간세포에 작용합니다. 글루코스 분자는 인슐린과 글루코스가 풍부하게 존재하는 한 글리코겐 체인에 첨가됩니다. 이 식후 또는 완전 상태에서, 간은 혈액보다 포도당을 더 많이 섭취합니다. 음식이 소화되고 포도당 수치가 떨어지기 시작하면 인슐린 분비가 감소하고 글리코겐 합성이 중지됩니다. 에너지가 필요할 때 글리코겐은 파괴되고 다시 포도당으로 변합니다. 글리코겐 포스 포 릴라 제는 글리코겐의 분해를위한 주요 효소입니다. 다음 8-12 시간 동안, 간 글리코겐에서 유래 된 포도당은 신체의 나머지가 연료를 생산하는데 사용하는 혈당의 주요 원천입니다. 췌장에서 생산되는 또 다른 호르몬 인 글루카곤은 대개 인슐린 신호와 상반됩니다. 정상보다 낮은 인슐린 수치 (혈당치가 정상 범위 이하로 떨어지기 시작할 때)에 따라 글루카곤은 증가하는 양으로 분비되고 글리코겐 분해 (글리코겐 분해)와 포도원 신생 (다른 공급원에서 포도당 생산)을 자극합니다.

근육

근육 세포 글리코겐은 근육 세포에 사용 가능한 포도당을 즉시 백업하는 역할을하는 것으로 보입니다. 소량을 포함하는 다른 셀 또한 로컬로 사용합니다. 근육 세포에는 글루코오스를 혈액으로 섭취해야하는 글루코오스 -6- 포스파타제가 없으므로 이들이 저장하는 글리코겐은 내부 전용으로 사용 가능하며 다른 세포에는 적용되지 않습니다. 이것은 요구에 따라 저장된 글리코겐을 포도당으로 쉽게 분해하여 다른 기관의 연료로 혈류를 통해 보내는 간세포와는 대조적입니다.

의 역사

글리코겐은 클로드 버나드에 의해 발견되었습니다. 그의 실험은 간이 간에서 "효소"의 작용에 의해 설탕을 감소시킬 수있는 물질을 함유하고 있음을 보여주었습니다. 1857 년까지 그는 "la matière glycogène"또는 "sugar-forming substance"라고 불리는 물질의 방출에 대해 설명했습니다. 간장에서 글리코겐이 발견 된 직후, A. Sanson은 근육 조직에도 글리코겐이 있음을 발견했습니다. 글리코겐 (C6H10O5) n의 실험식은 1858 년에 Kekule에 의해 수립되었습니다. 4)

신진 대사

합성

글리코겐의 합성은 파괴와는 달리 엔델 로닉 (endergonic) - 에너지 투입이 필요합니다. 글리코겐 합성을위한 에너지는 UTP-glucose-1-phosphate uridyl transferase에 의해 촉매되는 반응에서 포도당 -1- 인산과 반응하여 UDP- 글루코오스를 형성하는 uridine triphosphate (UTP)에서 비롯됩니다. 글리코겐은 UDP- 글루코스의 단량체로부터 처음에는 단백질 글리코 진인에 의해 합성된다. 글리코겐은 동종이 량체이기 때문에 글리코겐의 환원 말단에 2 개의 티로신 앵커가있다. 티로신 잔기에 약 8 개의 글루코오스 분자가 첨가 된 후, 글리코겐 신타 제 효소는 α (1 → 4) 결합 글루코스를 첨가함으로써 UDP- 글루코오스를 사용하여 글리코겐 사슬을 점차 길어지게한다. 글리코겐 효소는 비 환원 말단의 6 개 또는 7 개의 글루코스 잔기의 말단 부분을 글리코겐 분자의 내부 부분으로 더 깊게 포도당 잔기의 C-6 수산기로 전달하는 것을 촉매한다. 분지 효소는 적어도 11 잔기를 갖는 분지에만 작용할 수 있고 효소는 동일한 당쇄 또는 인접한 당쇄로 전달 될 수있다.

글리코겐 분해

글리코겐은 글리코겐 포스 포 릴라 제 효소에 의해 사슬의 비 환원 말단으로부터 절단되어 글루코오스 -1- 포스페이트 단량체를 생성한다. 생체 내에서 인산화와 포도당 -1- 인산의 비율이 대개 100을 초과하기 때문에 인산화는 글리코겐 분해 방향으로 진행됩니다. 5) 그런 다음 글루코오스 -1- 인산은 인산 글루코 타제에 의해 글루코오스 6- 인산 (G6P)으로 전환됩니다. 분지 된 글리코겐에서 α (1-6) 가지를 제거하기 위해, 사슬을 선형 중합체로 전환시키는 특별한 발효 효소가 필요하다. 생성 된 G6P 단량체에는 세 가지 가능한 운명이 있습니다. G6P는 해당 분해 경로를 따라 계속 진행할 수 있으며 연료로 사용할 수 있습니다. G6P는 효소 인 glucose-6-phosphate dehydrogenase를 통해 pentose phosphate 통로를 관통하여 NADPH와 5-carbon sugar을 생산할 수있다. 간과 신장에서 G6P는 효소 인 glucose-6-phosphatase에 의해 포도당으로 탈 인산화 될 수 있습니다. 이것은 혈관 신생 과정의 마지막 단계입니다.

임상 관련성

글리코겐 대사에 대한 위반

글리코겐 대사가 비정상적으로 나타나는 가장 흔한 질환은 비정상적으로 인슐린 양 때문에 간 글리코겐이 비정상적으로 축적되거나 고갈 될 수있는 당뇨병입니다. 정상 포도당 대사의 회복은 보통 글리코겐 대사를 정상화시킵니다. 저혈당증이 과도한 인슐린 수치로 인해 발생하면 간장의 글리코겐 양은 높지만 인슐린 수치가 높으면 정상적인 혈당치를 유지하는 데 필요한 글리코겐 분해를 예방할 수 있습니다. 글루카곤은 이러한 유형의 저혈당에 대한 일반적인 치료법입니다. 글리코겐의 합성 또는 분해에 필요한 효소가 부족하여 여러 가지 선천성 대사 장애가 발생합니다. 그들은 또한 글리코겐 저장 질병이라고도합니다.

글리코겐 고갈 효과 및 지구력

마라톤 선수, 스키어 및 자전거 타는 사람과 같은 장거리 주자는 종종 충분한 탄수화물 섭취가없는 상태에서 장시간 운동 후에 글리코겐 매장이 거의 없어지면 글리코겐이 고갈됩니다. 글리코겐의 고갈은 세 가지 방법으로 예방할 수 있습니다. 첫째, 운동 중에 혈당 (고혈당 지수)으로 전환 될 수있는 최고 속도의 탄수화물이 지속적으로 공급됩니다. 이 전략의 가장 좋은 결과는 최대 80 % 이상의 심장 리듬 동안 소비 된 포도당의 약 35 %를 대체합니다. 둘째, 지구력 적응 운동과 특수 패턴 (예 : 저 지구력 플러스 다이어트 훈련) 덕분에 신체는 연료 효율과 작업량을 향상시켜 연료로 사용되는 지방산의 비율을 높이기 위해 타입 Ⅰ 근육 섬유를 결정할 수 있습니다. 6) 탄수화물을 저장하십시오. 셋째, 운동이나식이의 결과로 글리코겐 저장을 고갈시킨 후에 많은 양의 탄수화물을 섭취하면 몸은 근육 내 글리코겐의 저장 용량을 증가시킬 수 있습니다. 이 과정을 "탄수화물 부하"라고합니다. 일반적으로 글리코겐 결핍의 결과로 근육 인슐린의 감도가 증가하기 때문에 탄수화물 원의 혈당 지수는 중요하지 않습니다. 7) 글리코겐 부족으로 운동 선수는 종종 걷는 것이 어려울 정도로 극심한 피로감을 경험합니다. 흥미롭게도, 세계 최고의 프로 사이클리스트는 원칙적으로 처음 세 가지 전략을 사용하여 글리코겐 고갈 한계에서 4-5 속도 레이스를 완료합니다. 운동 선수가 철저한 운동 후에 탄수화물과 카페인을 섭취하면 글리코겐 저장은 일반적으로 더 빠르게 보충됩니다 8). 그러나 글리코겐 포화도에 임상 적으로 유의 한 영향이 관찰되는 카페인의 최소 투여 량은 확립되지 않았습니다.

인체에서의 글리코겐 및 그 기능

인체는 그 법칙에 따라 행동하는 디버깅 된 메커니즘입니다. 그것의 각 나사는 전체적인 그림을 보완하는 기능을합니다.

원래의 위치로부터의 이탈은 전체 시스템의 실패를 초래할 수 있으며 글리코겐과 같은 물질은 자체 기능과 양적 규범을 가지고 있습니다.

글리코겐이란 무엇입니까?

그것의 화학 구조에 따르면, 글리코겐은 포도당을 기반으로하는 복합 탄수화물 군에 속하지만 전분과는 달리 인간을 포함한 동물의 조직에 저장됩니다. 글리코겐이 인간에 의해 저장되는 주요 장소는 간이지만, 골격근에 축적되어 작업에 에너지를 제공합니다.

물질에 의해 수행되는 주된 역할 - 화학적 결합 형태의 에너지 축적. 가까운 미래에 실현 될 수없는 많은 양의 탄수화물이 몸에 들어 오면 포도당을 세포에 공급하는 인슐린의 참여로 과량의 설탕이 글리코겐으로 전환되어 미래 에너지를 저장합니다.

포도당 항상성의 일반적인 계획

반대 상황 : 탄수화물이 부족할 때, 예를 들어 금식 중이나 많은 신체 활동 후에, 물질이 분해되어 포도당으로 변하게됩니다.이 포도당은 신체에 쉽게 흡수되어 산화 과정에서 여분의 에너지를줍니다.

전문가들의 권고에 따르면 글리코겐 100mg을 최소 일일 복용량으로 섭취 할 것을 제안하고 있지만, 적극적인 신체적, 정신적 스트레스를 가하면 증가시킬 수 있습니다.

인체에서 물질의 역할

글리코겐의 기능은 매우 다양합니다. 여분의 구성 요소 외에도 다른 역할을 수행합니다.

간장의 글리코겐은 세포의 과도한 포도당을 배설하거나 흡수하여 정상적인 혈당 수치를 유지하도록 도와줍니다. 보존 량이 너무 많아지고 에너지 원이 혈액으로 계속 유입되면 간과 피하 지방 조직에 지방 형태로 축적되기 시작합니다.

이 물질은 복잡한 탄수화물의 합성 과정을 허용하여 그 규제에 참여하고 따라서 신체의 신진 대사 과정에 참여합니다.

두뇌 및 기타 기관의 영양은 주로 글리코겐에 기인합니다. 따라서 뇌 활동은 정신 활동을 허용하여 뇌 활동에 충분한 에너지를 제공하고 간에서 생산되는 포도당의 70 %까지 소비합니다.

근육

글리코겐은 근육에 중요하며, 근육이 약간 소량 함유되어 있습니다. 여기서 주요 과제는 운동을 제공하는 것입니다. 작용하는 동안 탄수화물의 분리와 포도당의 산화로 인해 생성되는 에너지가 소비되고 휴식을 취하고 새로운 영양소가 신체에 들어가는 동안 새로운 분자가 생성됩니다.

그리고 이것은 골격뿐만 아니라 심장 근육에 관한 것이며, 그 품질은 주로 글리코겐의 존재에 달려 있으며 저체중 인 사람들은 심장 근육 병리를 일으킨다.

근육에 물질이 없기 때문에 다른 물질이 분해되기 시작합니다 : 지방과 단백질. 후자의 붕괴는 근육과 근 위축의 근원을 파괴하기 때문에 특히 위험합니다.

심각한 상황에서 신체는 상황을 벗어나 비 탄수화물 물질로부터 자체 포도당을 만들 수 있습니다.이 과정을 글리코 네오 게 네 시스 (glyconeogenesis)라고합니다.

그러나 신체가 필요로하는 에너지의 양을주지 않으면 서 파괴가 약간 다른 원리로 발생하기 때문에 신체에 대한 그 가치는 훨씬 적습니다. 동시에 사용 된 물질은 다른 중요한 공정에 사용될 수 있습니다.

또한,이 물질은 물을 묶고 축적하는 특성을 가지고 있습니다. 그래서 강렬한 운동을하는 운동 선수가 많이 땀을 흘리면 탄수화물과 관련된 물이 할당됩니다.

위험한 결핍 및 과잉은 무엇입니까?

아주 좋은식이 요법과 운동 부족으로 인해 글리코겐 과립의 축적과 분열 사이의 균형이 방해 받고 많은 양이 저장됩니다.

  • 피를 두껍게하기.
  • 간장 질환;
  • 체중 증가;
  • 장의 오작동.

근육 내 과량의 글리코겐은 작업의 효율성을 떨어 뜨리고 점차적으로 지방 조직의 출현으로 이어진다. 운동 선수들은 종종 다른 사람들보다 근육에 글리코겐을 축적하며 훈련 조건에 적응합니다. 그러나, 그들은 저장되고 산소가있어 포도당을 빠르게 산화시켜 다음 번 에너지를 방출합니다.

다른 사람들에게는 과도한 글리코겐 축적이 근육량의 기능을 감소시키고 추가적인 체중을 유발합니다.

글리코겐 결핍은 몸에 악영향을 미칩니다. 이것이 에너지의 주요 원천이기 때문에 다양한 유형의 작업을 수행하는 데 충분하지 않습니다.

결과적으로 인간의 경우 :

  • 혼수, 무관심;
  • 면책은 약해진다;
  • 기억은 나 빠진다;
  • 체중 감소가 발생하고, 근육 질량을 희생하여;
  • 피부 및 모발 상태를 악화시키는;
  • 감소 된 근육의 색조;
  • 활력이 감소합니다.
  • 종종 우울하게 보입니다.

그것으로의 인도는 불충분 한 영양으로 큰 육체적 정신적 정서적 스트레스가 될 수 있습니다.

전문가의 비디오 :

따라서 글리코겐은 체내에서 중요한 기능을 수행하여 에너지의 균형을 제공하고 축적되어 적절한 순간에 배출합니다. 그것 과잉은 결핍처럼 신체의 다른 시스템, 주로 근육과 뇌의 작업에 부정적인 영향을 미친다.

초과하면 단백질 식품을 선호하는 탄수화물 함유 식품의 섭취를 제한해야합니다.

결핍과 더불어 반대로 글리코겐을 많이 먹는 음식은 먹어야합니다.

  • 과일 (날짜, 무화과, 포도, 사과, 오렌지, 감, 복숭아, 키위, 망고, 딸기);
  • 과자 및 꿀;
  • 몇몇 야채 (당근과 비트);
  • 밀가루 제품;
  • 콩과 식물.

글리코겐

내용

글리코겐은 사슬에서 연결된 포도당 분자로 구성된 복잡한 탄수화물입니다. 식사 후에 많은 양의 포도당이 혈류에 들어가기 시작하고 인체는 글리코겐의 형태로이 포도당의 과잉을 저장합니다. 혈액 내의 포도당 수준이 감소하기 시작하면 (예를 들어, 신체 운동을 할 때) 신체는 효소를 사용하여 글리코겐을 분열시킵니다. 그 결과 포도당 수치는 정상으로 유지되고 기관 (운동 중 근육 포함)은 에너지를 생산하기에 충분합니다.

글리코겐은 주로 간과 근육에 축적됩니다. 성인의 간장과 근육에있는 글리코겐의 총 공급량은 300-400g입니다 ( "Human Physiology"AS Solodkov, EB Sologub). 보디 빌딩에서는 근육 조직에 들어있는 글리코겐 만 중요합니다.

강도 운동 (보디 빌딩, 파워 리프팅)을 할 때, 일반적인 피로는 글리코겐 저장고의 고갈로 인해 발생하기 때문에 운동 2 시간 전에 글리코겐 저장을 보충하기 위해 탄수화물이 풍부한 음식을 섭취하는 것이 좋습니다.

생화학 및 생리학 편집

화학적 인 관점에서, 글리코겐 (C6H10O5) n은 α-1 → 4 결합으로 연결된 포도당 잔기 (분지 부위에서 α-1 → 6)에 의해 형성된 다당류이다. 인간과 동물의 주요 예비 탄수화물. Glycogen (이 용어의 부정확성에도 불구하고 동물 전분이라고도 함)은 동물 세포에서 포도당 저장의 주된 형태입니다. 그것은 많은 유형의 세포 (주로 간과 근육)의 세포질에서 과립의 형태로 축적된다. 글리코겐은 갑작스런 포도당 부족을 보충하기 위해 필요한 경우 신속하게 동원 될 수있는 에너지 예비를 형성합니다. 그러나 글리코겐 매장은 그램 당 칼로리가 트리글리 세라이드 (지방)만큼 커지지 않습니다. 간 세포 (간세포)에 저장된 글리코겐 만이 전신을 키우기 위해 포도당으로 가공 될 수 있습니다. 간에서 글리코겐의 함량은 간에서 5 ~ 6 %가 될 수 있습니다. [1] 간에서 글리코겐의 총 질량은 성인에서 100-120 그램에 도달 할 수 있습니다. 근육에서 글리코겐은 지방 소비만을 위해 포도당으로 가공되고 훨씬 적은 농도 (총 근육 질량의 1 % 이하)로 축적되지만 총 근육 스톡은 간세포에 축적 된 축적량을 초과 할 수 있습니다. 소량의 글리코겐이 신장에서 발견되며 뇌 세포 (glial)와 백혈구의 특정 유형에서는 발견되지 않습니다.

예비 탄수화물로서 글리코겐은 곰팡이의 세포에도 존재합니다.

글리코겐 대사

몸에 포도당이 없기 때문에 효소의 영향을받는 글리코겐은 포도당으로 분해되어 혈액에 들어갑니다. 글리코겐의 합성 및 분해에 대한 조절은 신경계와 호르몬에 의해 수행됩니다. 글리코겐의 합성 또는 분해에 관여하는 효소의 유전 적 결점은 드문 병적 증후군 - 글리코겐증의 발달로 이어진다.

글리코겐 분해 조절

근육에서 글리코겐의 분해는 아드레날린을 시작하여 아드레날린은 수용체에 결합하고 아데 닐 레이트 사이 클라 제를 활성화시킨다. 아데 닐시 클라 제 (adenylate cyclase)는 사이 클릭 AMP를 합성하기 시작합니다. 사이 클릭 AMP는 궁극적으로 인산화 효소의 활성화로 이어지는 일련의 반응을 유발합니다. 글리코겐 포스 포 릴라 제는 글리코겐의 분해를 촉매합니다. 간에서 글리코겐 분해는 글루카곤에 의해 자극됩니다. 이 호르몬은 금식 중에 췌장 세포에 의해 분비됩니다.

글리코겐 합성 조절

글리코겐 합성은 인슐린이 수용체에 결합 된 후에 시작됩니다. 이것이 발생하면, 인슐린 수용체에서 티로신 잔기의자가 인산화가 일어난다. 인슐린 수용체 기질 -1, 포스 포이 노시 톨 -3- 키나아제, 포스 포 이노시톨 - 의존성 키나제 -1, AKT 단백질 키나아제와 같은 시그널링 단백질이 교대로 활성화되는 일련의 반응이 개시된다. 궁극적으로 키나아제 -3 글리코겐 합성 효소가 저해된다. 금식하면 키나아제 -3 글리코겐 신테 타제는 인슐린 신호에 반응하여 식사 후 짧은 시간 동안 만 활성화 및 비활성화됩니다. 인산화에 의해 글리코겐 신타 제를 억제하고 글리코겐 합성을 허용하지 않습니다. 음식물 섭취 동안, 인슐린은 일련의 반응을 활성화 시키며, 그 결과 키나아제 -3 글리코겐 합성 효소가 억제되고 단백질 포스 파타 아제 -1이 활성화됩니다. 단백질 포스 파타 아제 -1은 글리코겐 합성 효소를 탈 인산화시키고, 후자는 글루코스로부터 글리코겐을 합성하기 시작한다.

단백질 티로신 포스파타제와 그 억제제

식사가 끝나자 마자 단백질 티로신 포스파타제가 인슐린 작용을 차단합니다. 그것은 인슐린 수용체의 티로신 잔기를 탈 인산화시키고, 수용체는 비활성 상태가됩니다. 제 2 형 당뇨병 환자에서 단백질 티로신 포스 파타 아제의 활성이 과도하게 증가하여 인슐린 신호를 차단하고 인슐린 저항성으로 판명됩니다. 현재, 단백질 인산 가수 분해 효소 억제제의 개발을 목표로 연구가 진행되고 있으며,이를 통해 제 2 형 당뇨병 치료에서 새로운 치료법을 개발할 수있게 될 것입니다.

글리코겐 저장 보충 편집

대부분의 외국 전문가 [2] [3] [4]는 근육 활동을위한 주요 에너지 원으로 글리코겐을 대체 할 필요성을 강조합니다. 이러한 작업에서 반복되는 하중은 근육과 간에서 글리코겐 축적이 심하게 고갈되고 운동 선수의 성능에 악영향을 미칠 수 있습니다. 탄수화물 함량이 높은 식품은 글리코겐 저장량, 근육 에너지 잠재력을 증가시키고 전반적인 성능을 향상시킵니다. V. Shadgan의 관찰에 따르면 하루에 칼로리의 대부분 (60-70 %)은 빵, 시리얼, 시리얼, 야채 및 과일을 제공하는 탄수화물로 계산되어야합니다.

근육 글리코겐 : 실제 정보

글리코겐이라는 개념이이 블로그에서 우회되었다. 많은 기사가이 용어를 사용하여 현대 독자의 문맹률과 폭을 암시합니다. 위의 모든 사항을 기재하고, 가능한 "이해력"을 제거하고 마침내 근육 글리코겐이란 무엇인가를 다루기 위해이 기사가 쓰여졌다. 그것은 난해한 이론은 아니지만, 취해지고 적용될 수있는 그런 많은 정보가있을 것입니다.

근육 글리코겐 정보

글리코겐이란 무엇입니까?

글리코겐은 포도당 분자에서 모여 체인을 형성하는 우리 몸의 에너지 저장고 인 보존 된 탄수화물입니다. 식사 후 많은 양의 포도당이 섭취됩니다. 그것의 초과는 글리코겐의 형태로 에너지 목적을 위해 우리의 몸을 저장합니다.

신체의 혈당 수준이 낮아지면 (운동, 배고픔 등으로 인해) 효소가 글리코겐을 포도당으로 분해하여 그 수준이 정상 수준으로 유지되고 뇌, 내장 기관 및 근육이 (훈련 중) 유지됩니다. 에너지 재생산을 위해 포도당을 받는다.

간에서 혈액으로 유리 포도당을 방출하십시오. 근육에 - 에너지를주는 것

글리코겐 상점은 주로 근육과 간에서 발견됩니다. 근육에서 그 함량은 300-400g, 간에서 또 다른 50g, 또 다른 10g에서 우리의 혈액을 자유 포도당 형태로 여행합니다.

간 글리코겐의 주요 기능은 혈당 수치를 건강하게 유지하는 것입니다. 간 저장은 또한 정상적인 뇌 기능 (일반적인 음색을 포함하여)을 제공합니다. 근육 글리코겐은 근력 운동에서 중요합니다. 그 회복 메커니즘을 이해하는 능력은 당신의 스포츠 목적에 도움이 될 것입니다.

근육 글리코겐 : 고갈과 보충

나는 글리코겐 합성 과정의 생화학에 대해 연구 할 필요가 없다. 여기 공식을 가져 오는 대신, 실제로 적용 할 수있는 정보가 가장 가치가 있습니다.

근육에 글리코겐이 필요합니다 :

  • 근육 에너지 기능 (수축, 스트레칭),
  • 근육 충만의 시각 효과
  • 단백질 합성 과정을 가능하게합니다. (새로운 근육의 건설). 근육 세포에 에너지가 없으면 새로운 구조의 성장이 불가능합니다 (즉, 단백질과 탄수화물 모두 필요합니다). 저탄수화물식이 요법이 그렇게 열악한 이유입니다. 일부 탄수화물 - 글리코겐이 충분하지 않음 - 지방이 많고 근육이 많이 필요합니다.

글리코겐 만 글리코겐에 갈 수 있습니다. 따라서 총 칼로리 함량의 50 % 이상을식이에 탄수화물 막대를 유지하는 것이 중요합니다. 정상 수준의 탄수화물 (일일 식단의 약 60 %)을 섭취함으로써 자신의 글리코겐을 최대로 유지하고 신체가 탄수화물을 매우 잘 산화하도록합니다.

글리코겐 로딩

글리코겐 저장소가 채워지면 근육은 육가공의 볼륨에 글리코겐 과립이 존재하기 때문에 육안으로 커집니다 (평평하지는 않지만 부피가 커집니다). 차례대로, 포도당 1 그램 당 3 그램의 물을 끌어 당깁니다. 이것은 충만의 효과입니다 - 근육에 물을 유지합니다 (이것은 절대적으로 정상입니다).

300g의 근육에 70kg의 체중과 그의 글리코겐 저장고가있는 경우 에너지 저장량은 1200kcal (탄수화물 1g 당 4kcal)가되어 향후 비용이 발생합니다. 모든 글리코겐을 태우는 것은 극히 어렵다는 것을 알고 있습니다. 피트니스의 세계에서 그러한 강도의 훈련은 존재하지 않습니다.

보디 빌딩 운동에서 글리코겐 저장을 완전히 고갈 시키면 작동하지 않습니다. 훈련의 강도는 근육 글리코겐의 35-40 %를 태울 수있게합니다. 모바일 및 고강도 스포츠에서만 정말 큰 피로감이 있습니다.

글리코겐 저장소를 보충하는 것은 운동 후에도 1 시간 (단백질 탄수화물 창 - 신화, 여기에 더 있음) 이내에 있지 않지만 오랫동안 처분 할 수 있습니다. 탄수화물의 충격 복용량은 내일 운동으로 근육 글리코겐을 복원해야하는 경우에만 중요합니다 (예 : 탄수화물 하역 3 일 후 또는 매일 운동하는 경우).

응급 글리코겐 보충을위한 샘플 Chitmyla

이 상황에서는 고 글리세 믹 탄수화물을 다량으로 섭취하는 것이 필요합니다 - 500 ~ 800 g 운동 선수의 무게에 따라 (근육이 많을수록 석탄이 많아짐) 이러한 부하는 근육 저장소를 최적으로 보충합니다.

다른 모든 경우에 글리코겐 축적량 보충은 하루에 먹는 탄수화물 총량 (분수 또는 한 번)에 영향을받습니다.

글리코겐 저장소의 양을 늘릴 수 있습니다. 체력이 증가함에 따라 근육의 혈장 (sarcoplasma)의 양이 증가하고 따라서 글리코겐을 더 많이 넣을 수 있습니다. 또한, 탄수화물을 언 로딩 및 로딩 단계로 전환 시키면 글리코겐의 과다 보상으로 인하여 몸이 그 매장량을 증가시킬 수 있습니다.

근육 글리코겐 보정

글리코겐 회수에 영향을 미치는 두 가지 주요 요인은 다음과 같습니다.

  • Glycogen 고갈 훈련.
  • 다이어트 (요점 - 탄수화물의 양).

글리코겐 저장소의 충분한 보충은 최소 12-48 시간 간격으로 이루어지며, 이는 글리코겐 저장을 고갈시키고 근육 저장소를 과다하게 보정하기 위해이 기간 후에 각 근육 그룹을 훈련하는 것이 합리적임을 의미합니다.

이러한 훈련은 혐기성 분해 과정의 산물에 의한 근육의 산성화를 목표로하며, 운동에서의 접근은 20-30 초 동안 지속되며, PM에서 연소하는 55-60 %의 영역에서 작은 체중을 유지합니다. 이것들은 근육 에너지 저장 장치 개발을위한 가벼운 운동 훈련입니다 (운동 기술을 연습하기 위해).

영양으로. 매일 칼로리와 단백질, 지방 및 탄수화물의 비율을 올바르게 선택하면 근육과 간에서 글리코겐 저장소가 완전히 채워집니다. 칼로리와 매크로 (비율 B / F / L)를 올바르게 선택한다는 것은 무엇을 의미합니까?

  • 단백질로 시작하십시오. 무게 1kg 당 단백질 1.5-2g. 단백질의 그램 수에 4를 곱한 결과 우리는 단백질에서 일일 칼로리를 얻습니다.
  • 지방을 계속하십시오. 지방에서 일일 칼로리의 15-20 %를 섭취하십시오. 1 g의 지방은 9 kcal을줍니다.
  • 나머지는 모두 탄수화물이 될 것입니다. 그들은 총 칼로리 (건조에서 칼로리 결핍, 질량에서 잉여)를 조절합니다.

예를 들어, 60 (g) / 20 (b) / 20 (g)의 체중 증가와 체중 감량을위한 절대적으로 효과가있는 체계입니다. 탄수화물 50 % 이하, 지방 15 % 이하는 권장하지 않습니다.

글리코겐 저장소는 바닥이없는 배럴이 아닙니다. 그들은 제한된 양의 탄수화물을 섭취 할 수 있습니다. Acheson 외의 연구가있다. 1982 년에 글리코겐이 고갈 된 다음 3 일 동안 700-900g의 탄수화물을 먹였다. 이틀 후 그들은 지방을 축적하는 과정을 시작했습니다. 결론 : 700g의 탄수화물과 그 이상의 많은 양을 연속적으로 섭취하면 지방으로 전환됩니다. 열성적인 것.

결론

이 글이 근육 글리코겐의 개념을 이해하는데 도움이 되었기를 바랍니다. 실용적인 계산은 아름답고 강한 몸을 찾는 데 실질적인 도움이 될 것입니다. 질문이 있으시면 아래 의견에 질문하십시오. 망설이지 마십시오!

bodytrain.ru로 더 강력 해집니다.

기술 자료 블로그의 다른 기사를 읽으십시오.

글리코겐 (Glycogen) : 신체의 에너지 "팬트 리 (pantries)"

이 "글리코겐"은 어떤 종류의 동물입니까? 일반적으로 탄수화물과 관련하여 언급되지만,이 물질의 본질에 대해 깊이 파고 들지는 않습니다. Bone Broad는 글리코겐에 대해 가장 중요하고 필요한 모든 것을 당신에게 이야기하기로 결정했습니다. "20 분간 달리면 지방이 타는 것이 시작된다는 신화를 더 이상 믿지 않습니다." 호기심? 읽기!

그래서이 글에서 글리코겐은 무엇이며, 어떻게 형성되며, 글리코겐이 어디서 왜 축적되고, 어떻게 글리코겐 교환이 일어나고, 어떤 제품이 글리코겐의 근원인지를 배우게됩니다.

글리코겐이란 무엇입니까?

우리의 신체는 무엇보다 먼저 에너지 원으로서 음식을 필요로합니다. 즐거움의 원천, 항 스트레스 방패 또는 자신을 "부려 먹는"기회로 삼아야합니다. 아시다시피, 우리는 지방, 단백질 및 탄수화물과 같은 다량 영양소로부터 에너지를 얻습니다. 지방은 9 kcal, 단백질과 탄수화물 - 4 kcal을줍니다. 그러나 에너지의 고 에너지 가치와 필수 아미노산이 단백질에서 중요한 역할을 담당 함에도 불구하고 탄수화물은 신체의 가장 중요한 에너지 공급원입니다.

왜? 대답은 간단합니다. 지방과 단백질은 에너지의 "느린"형태입니다. 발효에는 시간이 걸리며 탄수화물은 "빠릅니다." 모든 탄수화물 (사탕 또는 밀기울 빵)은 결국 포도당으로 분열되며 이는 신체의 모든 세포의 영양에 필수적입니다. 탄수화물 절단 계획

글리코겐은 일종의 "방부제"탄수화물이며, 다른 말로하면 다음에 필요한 에너지를 위해 포도당을 저장합니다. 물과 관련된 상태로 저장됩니다. 즉 글리코겐은 1-1.3 kcal / g의 발열량 (4 kcal / g의 탄수화물 열량 포함)의 "시럽"입니다.

합성

글리코겐 형성 과정 (glycogenesis)은 2m 시나리오에 따라 진행됩니다. 첫 번째는 글리코겐 저장 과정입니다. 탄수화물 함유 식사 후 혈당 수치가 올라갑니다. 이에 따라 인슐린은 혈류에 들어가 포도당이 세포 내로 전달되도록 촉진하고 글리코겐의 합성을 돕습니다. 효소 (아밀라아제) 덕분에 탄수화물 (전분, 과당, 말토오스, 자당)이 더 작은 분자로 분해되고 소장 효소의 영향으로 포도당이 단당으로 분해됩니다. 단당류 (설탕의 가장 단순한 형태)의 상당 부분은 글리코겐이 "예비 (reserve)"에 저장되는 간과 근육으로 들어간다. 글리코겐 합계 300-400g.

두 번째 기전은 굶주림이나 격렬한 신체 활동이 시작될 때 시작되며 필요에 따라 글리코겐은 저장소에서 동원되어 포도당으로 전환되며 이는 조직에 공급되어 생활 활동의 과정에서 사용됩니다. 신체가 세포에서 글리코겐의 공급을 고갈 시키면 뇌는 "재급유"의 필요성에 대한 신호를 보냅니다.

저장 위치는 어디입니까?

  1. 간장의 글리코겐.

글리코겐의 주요 매장량은 간과 근육에 있습니다. 간에서 글리코겐의 양은 성인에서 150-200 그램에 달할 수 있습니다. 간 세포는 글리코겐 축적의 선두 주자입니다.이 물질은 8 %까지 구성 할 수 있습니다.

간 글리코겐의 주된 기능은 혈당 수치를 일정하고 건강한 수준으로 유지하는 것입니다. 간 자체는 신체의 가장 중요한 장기 중 하나입니다 (우리 모두가 필요로하는 기관들 사이에서 "히트 퍼레이드"를 개최하는 것이 가치가 있습니다). 그리고 글리코겐을 저장하고 사용하면 그 기능이 훨씬 더 책임있게됩니다. 신체의 정상적인 수준의 설탕만으로도 고품질의 뇌 기능이 가능합니다.

혈액 내의 설탕 수치가 감소하면 몸이 오작동하기 시작하여 에너지 부족이 발생합니다. 뇌의 영양 결핍은 중추 신경계에 영향을 미치며 소진됩니다. 글리코겐의 분열이 있습니다. 그러면 포도당이 혈류로 들어가서 몸이 필요한 양의 에너지를받습니다.

근육에있는 글리코겐.

글리코겐은 또한 근육에 축적됩니다. 신체의 글리코겐 총량은 300-400 그램입니다. 우리가 알듯이 약 100-120 그램의 물질이 간에서 축적되지만 나머지 (200-280 g)는 근육에 저장되며이 조직의 총 질량의 최대 1-2 %를 차지합니다. 가능하면 정확하기는하지만, 글리코겐은 근육 섬유가 아니라 근육을 둘러싼 영양소 인 근육 섬유에 저장된다는 점에 유의해야합니다.

근육 내 글리코겐의 양은 풍부한 영양의 경우 증가하고, 금식 중에는 감소하고, 운동 중일 때만 - 장기간 및 / 또는 강렬한 근육 감소. 근육이 근육 수축의 시작시 활성화되는 특수 효소 포스 포 릴라 제의 영향하에 작용할 때 강화 된 글리코겐 분해가 일어나 근육 (근육 수축)이 포도당과 함께 작용하도록합니다. 따라서 근육은 글리코겐만을 필요로합니다.

강렬한 근육 활동은 탄수화물의 흡수를 느리게하고 가볍고 짧은 일은 포도당의 흡수를 증가시킵니다.

간과 근육의 글리코겐은 다양한 요구에 사용되지만, 그 중 하나가 더 중요하다는 것은 절대 난센스이며 야생 무지 만 보여줍니다.

이 화면에 쓰여진 것은 이단입니다. 당신이 과일을 두려워하고 그들이 직접 지방에 저장되어 있다고 생각한다면,이 말도 안되는 사람에게 아무 말도하지 말고 급히 기사를 읽으십시오. 과당 : 과일을 먹고 체중을 줄이는 것이 가능한가?

모든 활동적인 신체 활동 (체조, 복싱, 달리기, 에어로빅, 수영 및 땀과 긴장을 유발하는 모든 운동)에 대해 몸은 활동 시간당 글리코겐 100-150 그램이 필요합니다. 글리코겐 저장을 사용하면 몸은 먼저 근육을 파괴하고 지방 조직을 파괴하기 시작합니다.

참고 : 이것이 장기간의 완전 기아에 관한 것이 아니라면, 글리코겐 저장은 필수적이기 때문에 완전히 고갈되지는 않습니다. 간을 보유하지 않으면 뇌가 포도당을 공급하지 않고도 남아있을 수 있으며 이것은 뇌가 가장 중요한 기관이기 때문에 치명적입니다 (일부 사람들이 생각하는 것처럼 엉덩이가 아닙니다). 근육 보유가 없다면 자연적으로 육식 할 수있는 기회가 증가하는 것으로 인식되는 집약적 인 육체 노동을 수행하기가 어렵습니다.

훈련은 글리코겐 저장고를 고갈 시키지만, "처음 20 분 동안 우리는 글리코겐에 대해 연구 한 다음, 지방으로 전환하여 체중을 줄입니다." 예를 들어, 훈련 된 운동 선수가 다리에 운동 20 세트를 수행하는 연구 (4 회 연습, 각 5 세트, 실패로 6 회에서 12 회 반복, 휴식은 짧았고 총 훈련 시간은 30 분)을 수행했습니다. 강도 훈련에 익숙한 사람은 쉽지 않다는 것을 이해합니다. 운동 전과 후에 그들은 생검을 받아 글리코겐 함량을 관찰했습니다. 글리코겐 양은 160 내지 118 mmol / kg, 즉 30 % 미만으로 감소되었다.

이런 식으로 우리는 또 다른 신화를 없앴습니다. 운동을 위해 모든 글리코겐 저장소를 다 써 버리는 시간은 거의 없을 것입니다. 따라서 땀이 많은 운동화와 외계인들 사이에서 라커룸에서 바로 음식을 뛰지 말아야하며, 피할 수없는 이화 작용으로 죽지 않을 것입니다. 그건 그렇고, 운동 후 30 분 이내에 글리코겐 저장을 보충 할 가치가 있습니다. (아아, 단백질 - 탄수화물 창은 신화입니다.) 그러나 24 시간 이내에.

사람들은 글리코겐 고갈 속도를 과장하여 (다른 많은 것들과 마찬가지로)! 훈련 직후에, 그들은 목이 비어있는 첫 번째 워밍업 접근법 이후에 "석탄"을 던지기를 원합니다. 그렇지 않으면 "근육 글리코겐 고갈 및 CATABOLISM"이 발생합니다. 그는 낮과 콧수염에 한 시간 동안 누워 있었고 간 글리코겐은 없었다. 나는 20 분 거북이 달리기의 치명적인 전력 소비에 대해 침묵합니다. 그리고 일반적으로 근육은 1 킬로그램 당 40 킬로 칼로리를 먹고 단백질 덩어리는 위 점액을 형성하고 암을 유발합니다. 우유는 부어 오르면 비늘에 5 킬로그램 (지방이 아닌), 지방이 비만을 일으키고 탄수화물은 치명적입니다 (두려워 - 나는 두려워.) 글루텐으로 확실히 죽을거야. 선사 시대에 살아남아 멸종하지 않은 것은 이상한 일입니다. 비록 우리가 맹목적으로 애매한 태도와 운동 구덩이를 먹지는 않았지만.
기억하십시오. 자연은 우리보다 더 똑똑하며 오랜 시간 동안 진화의 도움을 받아 모든 것을 조정했습니다. 인간은 존재하고 번식하며 생존 할 수있는 가장 적응되고 적응 가능한 생물 중 하나입니다. 그래서 정신병 환자, 신사 숙녀 여러분.

그러나 공복에 대한 훈련은 의미가 없다. "나는 어떻게해야합니까?"라고 생각합니다. "심장 : 언제 그리고 왜?"기사에서 답을 찾을 수 있습니다. 이것은 굶주리는 운동의 결과에 대해 알려줍니다.

시간은 얼마나 소요됩니까?

간 글리코겐은 주로 식사 사이의 혈액 포도당 농도를 줄임으로써 분해됩니다. 48-60 시간의 완전 금식 후 간장의 글리코겐 저장은 완전히 고갈됩니다.

근육 글리코겐은 신체 활동 중에 소모됩니다. 그리고 여기에서 다시 우리는 신화에 대해 다시 논의 할 것입니다. "지방을 태우려면 최소 20 분 동안 글리코겐 저장고 만 소진되고 피하 지방은 연료로 사용되기 시작하므로 순수한 수학적 측면에서만 30 분 이상 달리야합니다. 어디에서 왔습니까? 그리고 개는 그를 안다!

사실 몸이 에너지로 지방을 산화시키는 것보다 글리코겐을 사용하는 것이 더 쉽습니다. 이것이 주로 소비되는 이유입니다. 따라서 신화 : 먼저 글리코겐 전체를 소비해야하며 지방이 연소되기 시작하고 에어로빅 운동이 시작된 후 약 20 분 후에 발생합니다. 왜 20? 우리는 전혀 모른다.

하지만 글리코겐을 모두 사용하는 것은 그리 쉽지 않으며 20 분으로 제한되지 않습니다. 우리가 알고 있듯이 체내의 글리코겐 총량은 300-400 그램이며 일부 출처는 약 500 그램으로 1200에서 2000 킬로 칼로리입니다! 당신은 칼로리를 통해 그러한 휴식을 고갈시키기 위해 얼마나 많이 달리야하는지 알고 있습니까? 체중이 60kg 인 사람은 22 ~ 3km의 평균 속도로 달려야합니다. 준비 됐니? 배수 글리코겐

근육 성장

성공적인 훈련을 위해서는 두 가지 주요 조건이 필요합니다. 근력 트레이닝을하기 전 근육에 글리코겐이 있는지와 그 이후에 충분한 양을 회복해야합니다. 글리코겐이없는 강도 훈련은 말 그대로 근육을 태울 것입니다. 이것이 일어나지 않기 위해서는 식단에 충분한 탄수화물이 있어야 몸이 모든 과정에 에너지를 공급할 수 있어야합니다. 글리코겐 (및 산소)이 없으면 우리는 에너지 저장 또는 예비 탱크로 사용되는 ATP를 생산할 수 없습니다. ATP 분자 자체는 에너지를 저장하지 않으며, 생성 된 직후에 에너지를 방출합니다.

근육 섬유의 직접적인 에너지 원은 항상 아데노신 트리 포스페이트 (ATP)이지만, 근육 내에는 너무 작기 때문에 1-3 초의 집중적 인 작업 만 지속됩니다! 따라서 세포에서 지방, 탄수화물 및 기타 에너지 전달체의 모든 변형은 연속적인 ATP 합성으로 감소됩니다. 즉 이러한 모든 물질은 ATP 분자를 만들기 위해 "연소"됩니다. ATP는 사람이 스포츠를하지 않더라도 단순히 신체가 필요하지만 단순히 코를 골라냅니다. 그것은 모든 내부 기관의 일, 새로운 세포의 출현, 성장, 조직의 수축 기능 등에 달려 있습니다. 예를 들어 강렬한 운동을하는 경우 ATP를 크게 줄일 수 있습니다. 그래서 ATP를 복원하는 방법을 알아야하며, 골격 근육뿐만 아니라 내부 장기에도 연료 역할을하는 신체 에너지를 되돌려 야합니다.

또한 글리코겐은 근육 성장이 불가능한 운동 후에 신체 회복에 중요한 역할을합니다.

물론 근육은 수축과 성장을위한 에너지가 필요합니다 (단백질 합성을 가능하게하기 위해). 근육 세포에는 아무런 에너지도 없지만 성장은 없습니다. 그러므로 탄수화물이나 다이어트없이 탄수화물의 양이 적어지면 탄수화물이 적고 글리코겐이 적기 때문에 근육을 활발히 연소시킵니다.

따라서 단백질 해독과 곡물과 과일에 대한 두려움 : 용광로에있는 고지식에 관한 책을 던져라! 균형 잡힌, 건강한, 다양한식이 요법을 선택하고 (여기에 설명되어 있음) 개별 제품을 악마로 삼지 마십시오.

몸을 깨끗하게하는 것을 좋아합니까? 그렇다면 "Detox Fever"라는 기사가 확실히 충격을 줄 것입니다.

제품

글리코겐 만 글리코겐에 갈 수 있습니다. 따라서 총 칼로리 함량의 50 % 이상인 탄수화물 음식 막대를 유지하는 것이 매우 중요합니다. 정상적인 수준의 탄수화물 (일일 식단의 약 60 %)을 섭취하면 자신의 글리코겐을 최대로 유지하고 신체가 탄수화물을 매우 잘 산화하도록합니다.

다이어트 베이커리 제품, 시리얼, 시리얼, 다양한 과일 및 야채를 섭취하는 것이 중요합니다.

글리코겐의 가장 좋은 소스는 설탕, 꿀, 초콜릿, 마멀레이드, 잼, 날짜, 건포도, 무화과, 바나나, 수박, 감, 달콤한 패스트리입니다.

간 기능 장애 및 효소 부족 환자에게는 이러한 음식물에주의를 기울여야합니다.